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In this paper, the average unit cell for a quasicrystal is constructed by a statistical

approach. For the Penrose tiling, it is shown that such a unit cell is fully

equivalent to the oblique projection of the atomic surface onto physical space.

The obtained statistical distributions can be easily extended to imperfect

structures by using a Gaussian approximation. This leads to simple analytical

expressions for diffraction intensities, which can be very useful in structure

re®nement.

1. Introduction

The concept of the average unit cell was ®rst introduced in the

theory of incommensurately modulated structures (Janner &

Janssen, 1977). It has already been shown (Duneau & Oguey,

1990; Wolny, 1998; Xu & Mai, 1998; Steurer & Haibach, 1999;

Steurer & Cervellino, 2001; Wolny & Kozakowski, 2001;

Argon et al., 2002; Cervellino & Steurer, 2002; Wolny et al.,

2002) that for quasicrystals one can also construct the average

unit cell in physical space (for Penrose tiling see also Fig. 2). In

Duneau & Oguey (1990), the property of quasiperiodic

structures built by the cut-and-project method or any

equivalent method is related to a periodic lattice with a

bounded deformation of the atomic surface. The maximum

repeated frequency of local close-packed structures in space,

which has been considered by Xu & Mai (1998), gives the

lowest energy for the quasicrystalline phase. A general

method to ®nd average lattices based on the so-called gener-

alized dual method to generate quasiperiodic lattices has been

discussed in Argon et al. (2002). To construct an average unit

cell, Steurer et al. (Steurer & Haibach, 1999; Steurer &

Cervellino, 2001; Cervellino & Steurer, 2002) have used an

oblique projection of the atomic surface onto physical space.

A probabilistic approach based on a concept of reference

lattices has been formulated by Wolny (1998). Using two

reference lattices, one can reconstruct the diffraction pattern

(i.e. the main re¯ections and their satellites) in any direction of

the scattering vector. Recently (Wolny & Kozakowski, 2001;

Wolny et al., 2002), we have proved that for Penrose tiling the

probabilistic approach for the single reference lattice is

similar, except for inversion, to the oblique projection used by

Steurer et al.

There are two properties of the structure factor that are

very important for the presented concept of the average unit

cell. The ®rst one is the scalar product between the wave

vector k and positional vector r, which means that for a chosen

scattering vector the whole structure is then projected onto

the direction pointed out by that particular wave vector. The

second property is that these scalar products determine the

phase shifts of the individual components and the information

concerning the atomic positions can be signi®cantly reduced to

a single unit cell, i.e. modulo the corresponding wavelength. In

the present approach, the diffraction intensity measures the

quality of the adjustment of the reference lattice to the real

structure. The diffraction peaks indicate a kind of similarity

resonance between the reference lattice (linked to the scat-

tering vector) and the real structure. For example, for the

majority of wave vectors, the reference lattice ®ts improperly

to the entire periodic structure, leading to the uniform

distributions of occupational positions in the corresponding

average unit cells. Fourier components of such distributions

are equal to zero and no diffraction peaks are observed for

such scattering vectors. Only for a certain set of wave vectors,

i.e. for points of the reciprocal lattice, is there a resonant

adjustment of the reference lattice to the real structure,

leading to the Bragg re¯ections. One should remember that

the concept of the average unit cell based on the reference

lattice is not an approximation and so the unit cell can be

constructed for an arbitrarily chosen scattering vector.

However, more appropriate are those wave vectors corre-

sponding to signi®cantly non-zero intensities of diffraction

patterns. For them, the similarity resonance of the reference

lattice and the real structure are really observed as well

developed diffraction peaks.

For the random tiling model, the most commonly used

theory is the phason Debye±Waller theory (Elser, 1985;

Widom et al., 1987; Tang & Jaric, 1990; Henley, 1991), which

operates in the perpendicular space. On the other hand, the

average unit-cell theory used in this paper operates in physical

space only and it goes beyond the tiling. This theory requires

no assumptions about the periodicity of the structure itself,

both in real space and in higher dimensions. The only peri-

odicity used in the calculations is the periodicity of a purely

mathematical object, which is the reference lattice. In the



present theory, there is no possibility of distinguishing

between phasons and phonons, and all of them are considered

as ¯uctuations. It has already been proved (Wolny & Koza-

kowski, 2001; Wolny et al., 2002) that for tilings (i.e. structures

that can be described in higher dimensions) the results

obtained from these two approaches are similar.

In the present paper, the theory of the average unit cell has

been applied to the Penrose tiling, as an example of a 2D

quasicrystal. The corresponding average unit cell consists of

four pentagons where the probability distributions of

distances from the lines of the reference lattices are non-zero.

We decided to approximate the obtained distributions by a

Gaussian to reduce the number of ®tted parameters, which can

drastically increase for decorated tilings. Although other

approximations (like elliptical approximation) give better

results, the Gaussian approximation seems to be the unique

one to include any kind of imperfections usually present in the

analysed structure.

There are in®nitely many average unit cells, similar to

normal crystals, which depend on the chosen scattering

vectors. For Penrose tiling, the average unit cell can be, for

example, obtained in two different ways, and the ®nal results

are fully equivalent. The ®rst way is just an oblique projection

of the perpendicular space atomic surface onto the physical

space (Wolny, 1998; Steurer & Haibach, 1999; Steurer &

Cervellino, 2001; Wolny & Kozakowski, 2001; Cervellino &

Steurer, 2002; Wolny et al., 2002). The projection, however, is

not orthogonal to the physical space but to the plane

embedded in 5D and spanned by two appropriately chosen

scattering vectors. The projection consists of four pentagons:

two big and two small (Fig. 2a).

The second method of constructing the average unit cell is

based on the reference lattice concept using the statistical

approach (Wolny, 1998). For two arbitrary chosen scattering

vectors, k1 and k2, which do not need to be orthogonal, two

reference lattices are constructed. The reference lattice is a set

of parallel lines periodically arranged in 2D and perpendicular

to the corresponding scattering vector. The periodicity of the

lattice grid is equal to �i � 2�=ki, i � 1; 2; for the ®rst and

second scattering vector, respectively. The position of any

node (2D atom) with respect to the reference lattices is given

by two coordinates, �u1; u2�, with the probability P�u1; u2�
de®ned for the whole structure. The Fourier transform of such

a probability describes the structure factor not only for the

given scattering vectors, k1 and k2, but also for all higher

harmonics of those vectors, i.e.

k � n1k1 � n2k2; �1�
where n1, n2 are integers. The structure factor then reads:

F�k� � f0

R�1

0

R�2

0

P�u1; u2� exp�i�n1k1u1 � n2k2u2�� du1 du2: �2�

For further calculations, it will be assumed that the atomic

form factor f 0 is equal to 1.

Fig. 2(a) shows the average unit cell calculated for two

reference lattices associated with two wave vectors, k1 and k2,

of the same lengths:

k1 � k2 � k0 � �2�=5�2� � 4:067; �3�
where � is the golden mean value de®ned as � � 1� 51=2=2 �
1.618.

Vectors k1 and k2 are directed at the angles of �� to the x

axis, respectively, where � � 2�=5 (Fig. 1). When increased to

5D, the corresponding vectors, K1 and K2, have the following

coordinates:

k1 � k0�cos���;� sin���� ÿ!K1 � �0; 0;ÿ1;ÿ1; 0�
k2 � k0�cos���;ÿ sin���� ÿ!K2 � �ÿ1;ÿ1; 0; 0; 0�: �4�

The calculations were performed for a cluster of Penrose

tilings consisting of about 160000 nodes placed at the corners

of the two types of rhombuses: thick and thin ones with edge

length equal to 1. The boundaries of the obtained average unit

cell are marked as dashed lines (Fig. 2a). One can easily notice

that the probability distribution of atomic positions in the

average unit cell ®ts very well to the oblique projection of the

atomic surface onto physical space. It has already been shown

analytically (Wolny & Kozakowski, 2001; Wolny et al., 2002)

that for the in®nite structure the probability distribution

consists of four pentagons shifted to a single unit cell as is

shown in Fig. 2(a). The extended average unit cell for such

wave vectors is shown in Fig. 2(b), where periodical arrange-

ment of projected pentagons can easily be noticed. Dashed

lines also mark the single average unit cell. To reconstruct the

diffraction pattern (Fig. 1), two additional vectors are needed,

namely the modulation vectors describing the satellite posi-

tions. The modulation vectors were chosen as following:

q1 � k1=�ÿ!Q1 � �1; 0; 0; 0; 0�
q2 � k2=�ÿ!Q2 � �0; 0; 0; 1; 0�: �5�
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Figure 1
Diffraction pattern of Penrose tiling obtained by Fourier transform of an
average unit cell de®ned in physical space by a statistical approach. The
average unit cell has been constructed for scattering vectors k1 � k2 �
4.07 and the corresponding modulation vectors q1 � q2 � 2.51, i.e. �
times smaller than the previous ones. The pair of vectors k1 and q1 (and
also k2 and q2) are parallel and directed at angles of �72� (directions 1
and 4) to the x axis, respectively. Five symmetry-equivalent directions are
also marked. Intensities of the diffraction peaks are more or less
proportional to the symbol size.
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The position of any diffraction peak can then be described by

a linear combination of four vectors: k1, k2, q1, q2, i.e.

k � n1k1 � n2k2 �m1q1 �m2q2; �6�
where n1, n2, m1, m2 are integers. Usually we call such a

re¯ection the mth satellite to the nth main diffraction peak.

The structure factor of the diffraction peak is then given by

F�k� � f0

R R R R
AUC

P�u1; u2; v1; v2� exp�i�n1k1u1 � n2k2u2

�m1q1v1 �m2q2v2�� du1du2dv1dv2; �7�
where AUC stands for the average unit cell and the integral

bounds are ��=k1, ��=k2, ��=q1, ��=q2, for u1; u2; v1; v2,

respectively (in the integrals below, these bounds will be

omitted). Variables v1 and v2 describe the shortest distances

between the node and the corresponding reference lattices of

lines associated with the modulation vectors q1 and q2. In

principle, one has to know the probability distribution

P�u1; u2; v1; v2� in 4D parameter space. This space is different

from the 4D orthogonal space used for the usual description of

Penrose tiling, with a completely different metric. All the

distances are calculated in physical space and also the distri-

bution density is de®ned in such a real space. The probability

distribution depends on four variables, however, as has

already been shown (Wolny & Kozakowski, 2001; Wolny et al.,

2002); the distribution is non-zero only along the lines given by

vi � ÿ�2ui � �ij �i � 1; 2; j � 1; . . . ; 4�; �8�
where �ij are some constant parameters depending on the

sequence of pentagons after projection onto the physical

space. Knowing the distribution P�u1; u2� and the set of

appropriate parameters, one can reconstruct the whole

diffraction pattern of Penrose tiling, including the intensities

of the individual peaks. Such an approach as discussed above

will be published separately. In this paper, however, the

diffraction pattern is calculated in a slightly different way, as is

described below. Similarly to what was done previously

(Wolny & Kozakowski, 2001; Wolny et al., 2002), the four

pentagons fH1;H2;H3;H4g and the two additional points

fH0;H5g of the projected atomic surface have been shifted to

the centre of the unit cell and the appropriate phases have

been added. H0 and H5 are equal to zero and they do not

contribute to the value of the structure factor.

2. Diffraction pattern along the x direction

The two vectors k1 and k2 when added give a scattering vector

along the x axis. The same holds also for q1, q2. Assuming that

n � n1 � n2 and m � m1 � m2, one obtains the following

expression for the structure factor along the x direction:

F�kx; 0� �P5

j�0

R
Pj�ux� expfi��kx ÿ 2k1xm51=2�ux

� �2�j=5��nr1 �mr2��g dux; �9�
where

kx � 2�nk1x �mq1x� � 2k1x�n�m=�� �10�
points out all the diffraction peaks along the x axis. Variables

k1x and q1x are the x components of k1 and q1; r1 and r2 are the

sums of the corresponding 5D coordinates of scattering

vectors (k1 and q1) modulo 5. Pj�ux� are components of the

probability distribution calculated for the scattering vector kx

associated with the jth pentagon. Equation (9) fully describes

the structure factor along the x direction for all the main

re¯ections and the satellites. To simplify (9), it is convenient to

introduce a new variable kxr, the reduced scattering vector

along the x direction, de®ned as

kxr � kx ÿ 2k1xm51=2: �11�
The structure factor then reads

Fa�kxr; 0� �P5

j�0

R
Pj�ux� expfi�kxrux � �2�j=5�a�g dux; �12�

where a stands for �nr1 �mr2� mod 5, with only three values of

a (a = 0, 1, 2) required in the calculations. Fa is the structure

factor for a group of peaks associated with a certain value.

From the symmetry point of view, the two probability distri-

Figure 2
(a) Average unit cell calculated for the cluster of Penrose tiling of about
160 000 atoms by a statistical approach for two scattering vectors k1 and
k2 given in the text. The shape of the statistical distribution ®ts very well
to the four pentagons of the atomic surface when projected onto the
physical space. It was proved analytically that the shapes obtained from
the projection method and the statistical approach are similar. (b)
Average unit cell in the extended scale. Four pentagons of the atomic
surface periodically ®ll the plane with the periodicity of the average unit
cell. Dashed lines mark a single unit cell.



butions for small pentagons are equal and will be described by

PS�ux�, i.e. P1�ux� � P4�ux� � PS�ux�. The same holds for two

big pentagons: P2�ux� � P3�ux� � PB�ux�. Equation (12) can

then be written as

Fa�kxr; 0� � 2
R �PS�ux� cos�2�a=5� � PB�ux� cos�4�a=5��
� exp�ikxrux�dux: �13�

For kxr � 0 (i.e. when kx � 2k1xm51=2),

Fa�0; 0� � 2
R �PS�ux� cos�2�a=5� � PB�ux� cos�4�a=5�� dux:

�14�
De®ning PS �

R
H PS�ux� dux and PB �

R
H PB�ux� dux, one can

also write: 2�PS � PB� � 1 (from the normalization); and

PB=PS � �2 (from the ratio of squares of the pentagons). The

above leads to three different values for the intensities of the

envelope functions at the origin, i.e.

I0�0� � jF�0�j2 � 1

I1�0� � 1=4

I2�0� � 0

�for a � 0�
�for a � 1�
�for a � 2�:

Three different classes of envelopes are obtained, as is shown

in Fig. 3(a). The intensity of the third class is almost negligible.

3. Diffraction pattern along the y direction

For the y direction, it can easily be shown (Wolny & Koza-

kowski, 2001; Wolny et al., 2002) that the sums of the corre-

sponding 5D coordinates of scattering vectors modulo 5 (r1

and r2) are equal to zero. This also means that a �
nr1 �mr2 mod 5 is equal to zero, where n is an index of the

main re¯ection and m is for the satellite. So along the y

direction the diffraction pattern looks much simpler (Fig. 3b)

than the one along the x direction. There is only a single type

of envelope going through the peak's maximum. The obtained
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Figure 4
(a) Probability distributions along the x direction for small and big
pentagons (solid lines) of the projected atomic surface. These distribu-
tions have been approximated by the appropriate Gaussians (broken
lines), which lead to the envelope functions shown in Fig. 3(a). (b)
Probability distributions along the y direction for small and big pentagons
(solid lines) of the projected atomic surface. These distributions have
been approximated by the appropriate Gaussians (broken lines), which
lead to the envelope functions shown in Fig. 3(b).

Figure 3
(a) Diffraction pattern of Penrose tiling calculated along the x direction
splits into three classes of peaks described by the parameter a = 0, 1, 2
[equation (18)]. The intensity of the third class is almost negligible.
Envelope functions have been calculated in the Gaussian approximation
[equation (18)] for a = 0 (solid thin line) and a = 1 (dashed line). These
lines ®t quite well to the calculated diffraction pattern (solid thick line).
Small differences between the envelope functions and the intensities of
the diffraction peaks completely disappear for proper statistical
distribution in the average unit cell. (b) All diffraction peaks along the
y direction are described by a single envelope function with a = 0
[equation (19)].
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formula for the structure factor is the same type as (9) [for

more details see also formula (37) of Wolny & Kozakowski

(2001)] with vanishing second term including r1 and r2, as both

of them are equal to zero. The ®nal result is

F�0; ky� �
P5

j�0

R
Pj�uy�fi��ky ÿ 2k1ym51=2�uy�g duy; �15�

where

ky � 2�nk1y �mq1y� � 2k1y�n�m=��: �16�

This single envelope function describes all the main re¯ections

and, when shifted by kshift � 2k1ym51=2 � 17:3m, also the

group of m-order satellites.

4. Gaussian approximation

The components of the probability distributions along the x

and y directions for different pentagons are shown in Figs. 4(a)

and 4(b). The distributions resemble four pentagons when

projected onto x and y axes. However, such distributions are

obtained only for perfect and in®nite Penrose tiling. For any

imperfection, the real distributions are smeared out. The

simplest approximation for the new shapes is the use of

Gaussian-type distributions for each pentagon (broken lines in

Figs. 4a and 4b), even if such an approximation is far from the

best one. Assuming Gaussian distributions, for small and big

pentagons along x and y directions, as

Pk�ui� � Aki exp�ÿu2
i =2�2

ki� �17�

with k 2 fS;Bg; i 2 fx; yg, from (13) and (15), one obtains the

analytical expressions for the envelope functions:

F�kxr; 0� � 1

1� �2
cos

2�a

5

� �
exp ÿ1

2k
2
xr�

2
Sx

ÿ ��
� �2 cos

4�a

5

� �
exp ÿ1

2k
2
xr�

2
Bx

ÿ �� �18�

F�0; kyr� �
1

1� �2
exp ÿ1

2k
2
yr�

2
Sy

ÿ �� �2 exp ÿ1
2k

2
yr�

2
By

ÿ �� �
: �19�

The above equations are very useful and can be used for

analysis of diffraction patterns not only along x and y direc-

tions but also along other symmetry-related directions. They

describe in a very simple way the envelope function (i.e. the

line that can be ®tted directly to the experimental diffraction

pattern) using only a few parameters, namely the four widths

of the Gaussian distributions. For other diffraction peaks, e.g.

located on other directions than along x and y, one can use

more general expressions:

Pk�ux; uy� � Ak exp ÿ u2
x

2�2
kx

ÿ u2
y

2�2
ky

 !
; k 2 fS;Bg �20�

with the following normalization:

AS�Sx�Sy �
1

4��1� �2�
AB�Bx�By �

1

4��1� �2� :

To test the Gaussian approximation, a set of twelve diffraction

peaks, six along the x and six along the y axis, were used for the

least-squares ®t using the formula

f � 1

nÿ 1

Xn

j�1

I0j ÿ Ij

I0j

� �2
" #( )1=2

; �21�

where I0j and Ij are the jth peak intensities obtained from

Fourier transform or Gaussian approximation, respectively,

n is the number of diffraction peaks. The results of the

calculations are shown in Figs. 3(a) and 3(b) for the best ®ts

obtained (�Sx � 0:578, �Bx � 0:758, f � 0:061; �Sy � 0:162,

�By � 0:161, f � 0:052). The test function f is shown in Fig. 5

versus the ®tted parameters (�Sx and �Bx for the x direction).

The obtained minimum is rather broad especially for �S, which

is quite obvious owing to the �2 smaller contribution to the

diffraction pattern coming from the small pentagon compared

to the big one.

5. Conclusions

One can conclude that diffraction analysis of Penrose tiling

(and also other quasicrystals) can be successfully performed in

physical space using the average unit-cell approach. Such an

average unit cell was constructed for some scattering vectors.

The Fourier transform of the probability densities of the

average unit cell leads to the envelope functions, which fully

describe the diffraction intensities of the main re¯ections and

their satellites. For ideal Penrose tiling, this approach is

equivalent to the higher-dimensional analysis. The probability

distribution in the average unit cell coincides with the pen-

Figure 5
Contours of the least-squares ®t [equation (21)] to the diffraction pattern
in an average unit cell approximated by the Gaussian distributions. A well
de®ned minimum for the � parameter of Gaussian distributions along the
x direction is observed. A similar distribution is also observed for the y
direction.



tagons obtained during the oblique projection of the atomic

surface into physical space. This leads to another interpreta-

tion of the atomic surface in perpendicular space: it can be

regarded as the average unit cell expanded up to higher

dimensions. However, all the calculations can be done in

physical space only and any modi®cations for defect structures

are straightforward and can be easily accomplished. To reduce

the number of parameters describing the probability distri-

butions, simple Gaussian distributions were used. As was

shown, this approximation quite well describes the diffraction

pattern of Penrose tiling. The Gaussian approximation is very

useful for defect or random tilings; however, for perfect

Penrose tiling much better results can be obtained with ¯at

distributions of elliptical shape (Wolny et al., 2002). The

greatest advantages of the presented approximation are

formulae (18) and (19), which in a very simple analytical way

describe the structure factor for defect Penrose tiling in

physical space. Only a few parameters, namely the widths of

the Gaussian distributions (two pairs of widths, �Sx, �Bx and

�Sy, �By for x and y directions, respectively) have to be ®tted in

order to obtain the average unit cell directly from the

diffraction pattern. Assuming additionally the ratio of widths

for big and small pentagons, one can even reduce the number

of ®tting parameters to only two. Such an analysis can be

successfully used for perfect and imperfect 2D quasicrystals

and its extension to 3D is straightforward.
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